Arsip | Math Statistic University RSS feed for this section

Analisis Korelasi

24 Apr

A. Pengertian
Sepanjang sejarah umat manusia, orang melakukan penelitian mengenai ada dan tidaknya hubungan antara dua hal, fenomena, kejadian atau lainnya. Usaha-usaha untuk mengukur hubungan ini dikenal sebagai mengukur asosiasi antara dua fenomena atau kejadian yang menimbulkan rasa ingin tahu para peneliti.
Korelasi merupakan teknik analisis yang termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (measures of association). Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman. Selain kedua teknik tersebut, terdapat pula teknik-teknik korelasi lain, seperti Kendal, Chi-Square, Phi Coefficient, Goodman-Kruskal, Somer, dan Wilson.
Pengukuran asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.
Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak (range) 0 sampai dengan 1. Korelasi mempunyai kemungkinan pengujian hipotesis dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi disebut tidak searah. Yang dimaksud dengan koefesien korelasi ialah suatu pengukuran statistik kovariasi atau asosiasi antara dua variabel. Jika koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut. Jika koefesien korelasi diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif.
Jika koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif.
Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut.

Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung. Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan kerja merupakan variabel Y.

B. Kegunaan
Pengukuran asosiasi berguna untuk mengukur kekuatan (strength) hubungan antar dua variabel atau lebih. Contoh: mengukur hubungan antara variabel:
1. Motivasi kerja dengan produktivitas
2. Kualitas layanan dengan kepuasan pelanggan
3. Tingkat inflasi dengan IHSG
Pengukuran ini hubungan antara dua variabel untuk masing-masing kasus akan menghasilkan keputusan, diantaranya:
1. Hubungan kedua variabel tidak ada
2. Hubungan kedua variabel lemah
3. Hubungan kedua variabel cukup kuat
4. Hubungan kedua variabel kuat
5, Hubungan kedua variabel sangat kuat
Penentuan tersebut didasarkan pada kriteria yang menyebutkan jika hubungan mendekati 1, maka hubungan semakin kuat; sebaliknya jika hubungan mendekati 0, maka hubungan semakin lemah.

C. Teori Korelasi
a. Korelasi dan Kausalitas
Ada perbedaan mendasar antara korelasi dan kausalitas. Jika kedua variabel dikatakan berkorelasi, maka kita tergoda untuk mengatakan bahwa variabel yang satu mempengaruhi variabel yang lain atau dengan kata lain terdapat hubungan kausalitas. Kenyataannya belum tentu. Hubungan kausalitas terjadi jika variabel X mempengaruhi Y. Jika kedua variabel diperlakukan secara simetris (nilai pengukuran tetap sama seandainya peranan variabel-variabel tersebut ditukar) maka meski kedua variabel berkorelasi tidak dapat dikatakan mempunyai hubungan kausalitas. Dengan demikian, jika terdapat dua variabel yang berkorelasi, tidak harus terdapat hubungan kausalitas.
Terdapat dictum yang mengatakan “correlation does not imply causation”. Artinya korelasi tidak dapat digunakan secara valid untuk melihat adanya hubungan kausalitas dalam variabel-variabel. Dalam korelasi aspek-aspek yang melandasi terdapatnya hubungan antar variabel mungkin tidak diketahui atau tidak langsung. Oleh karena itu dengan menetapkan korelasi dalam hubungannya dengan variabel-variabel yang diteliti tidak akan memberikan persyaratan yang memadai untuk menetapkan hubungan kausalitas kedalam variabel-variabel tersebut. Sekalipun demikian bukan berarti bahwa korelasi tidak dapat digunakan sebagai indikasi adanya hubungan kausalitas antar variabel. Korelasi dapat digunakan sebagai salah satu bukti adanya kemungkinan terdapatnya hubungan kausalitas tetapi tidak dapat memberikan indikasi hubungan kausalitas seperti apa jika memang itu terjadi dalam variabel-variabel yang diteliti, misalnya model recursive, dimana X mempengaruhi Y atau non-recursive, misalnya X mempengaruhi Y dan Y mempengaruhi X.
Dengan untuk mengidentifikasi hubungan kausalitas tidak dapat begitu saja dilihat dengan kaca mata korelasi tetapi sebaiknya menggunakan model-model yang lebih tepat, misalnya regresi, analisis jalur atau structural equation model.

b. Korelasi dan Linieritas
Terdapat hubungan erat antara pengertian korelasi dan linieritas. Korelasi Pearson, misalnya, menunjukkan adanya kekuatan hubungan linier dalam dua variabel. Sekalipun demikian jika asumsi normalitas salah maka nilai korelasi tidak akan memadai untuk membuktikan adanya hubungan linieritas. Linieritas artinya asumsi adanya hubungan dalam bentuk garis lurus antara variabel. Linearitas antara dua variabel dapat dinilai melalui observasi scatterplots bivariat. Jika kedua variabel berdistribusi normal dan behubungan secara linier, maka scatterplot berbentuk oval; jika tidak berdistribusi normal scatterplot tidak berbentuk oval.

Dalam praktiknya kadang data yang digunakan akan menghasilkan korelasi tinggi tetapi hubungan tidak linier; atau sebaliknya korelasi rendah tetapi hubungan linier. Dengan demikian agar linieritas hubungan dipenuhi, maka data yang digunakan harus mempunyai distribusi normal. Dengan kata lain, koefesien korelasi hanya merupakan statistik ringkasan sehingga tidak dapat digunakan sebagai sarana untuk memeriksa data secara individual.

c. Asumsi
Asumsi dasar korelasi diantaranya seperti tertera di bawah ini:
1. Kedua variabel bersifat independen satu dengan lainnya, artinya masing-masing variabel berdiri sendiri dan tidak tergantung satu dengan lainnya. Tidak ada istilah variabel bebas dan variabel tergantung.
2. Data untuk kedua variabel berdistribusi normal. Data yang mempunyai distribusi normal artinya data yang distribusinya simetris sempurna. Jika digunakan bahasa umum disebut berbentuk kurva bel. Menurut Johnston (2004) ciri-ciri data yang mempunyai distribusi normal ialah sebagai berikut:
– Kurva frekuensi normal menunjukkan frekuensi tertinggi berada di tengah-tengah, yaitu berada pada rata-rata (mean) nilai distribusi dengan kurva sejajar dan tepat sama pada bagian sisi kiri dan kanannya. Kesimpulannya, nilai yang paling sering muncul dalam distribusi normal ialah rata-rata (average), dengan setengahnya berada dibawah rata-rata dan setengahnya yang lain berada di atas rata-rata.
– Kurva normal, sering juga disebut sebagai kurva bel, berbentuk simetris sempurna.
– Karena dua bagian sisi dari tengah-tengah benar-benar simetris, maka frekuensi nilai-nilai diatas rata-rata (mean) akan benar-benar cocok dengan frekuensi nilai-nilai di bawah rata-rata.
– Frekuensi total semua nilai dalam populasi akan berada dalam area dibawah kurva. Perlu diketahui bahwa area total dibawah kurva mewakili kemungkinan munculnya karakteristik tersebut.
– Kurva normal dapat mempunyai bentuk yang berbeda-beda. Yang menentukan bentuk-bentuk tersebut adalah nilai rata-rata dan simpangan baku (standard deviation) populasi.

Baca lebih lanjut

Iklan